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Rotavirus is a double-stranded RNA virus belonging to the family of Reoviridae. The virus is transmitted by the faecal-oral route
and infects intestinal cells causing gastroenteritis. Rotaviruses are the main cause of severe acute diarrhoea in children less than
5 years of age worldwide. In our previous work we have shown a link between rotavirus infection and celiac disease. Nonceliac
gluten sensitivity (NCGS) is emerging as new clinical entity lacking specific diagnostic biomarkers which has been reported to
occur in 6–10% of the population. Clinical manifestations include gastrointestinal and/or extraintestinal symptoms which recede
with gluten withdrawal. The pathogenesis of the disease is still unknown. Aim of this work is to clarify some aspects of its
pathogenesis using a gene array approach. Our results suggest that NCGS may have an autoimmune origin. This is based both
on gene expression data (i.e., TH17-interferon signatures) and on the presence of TH17 cells and of serological markers of
autoimmunity in NCGS. Our results also indicate a possible involvement of rotavirus infection in the pathogenesis of nonceliac
gluten sensitivity similarly to what we have previously shown in celiac disease.

1. Introduction

Nonceliac gluten sensitivity (NCGS) can be defined as a
nonallergic condition in which the consumption of gluten
can lead to symptoms similar to those observed in celiac
disease (CD). NCGS is characterized by the absence of
celiac specific antibodies (against tissue transglutaminase,
endomysium, and/or deamidated gliadin peptide) and
absence of classical enteropathy (Marsh 0-1) although an
increased density of CD3+ intraepithelial lymphocytes
can be observed in duodenal biopsies. Patients with NCGS
may have variable HLA status, and positivity for HLA-
DQ2 and/or DQ8 has been found in roughly 50% of
patients with NCGS. Serological analyses of NCGS patients
revealed a high prevalence (40–50%) of first generation

antigliadin IgG antibodies. NCGS is characterized by
symptoms that usually occur soon after gluten ingestion
and disappear or improve with gluten withdrawal but
relapse following gluten challenge. The clinical presenta-
tion of NCGS may be a combination of gastrointestinal
symptoms, including abdominal pain, bloating, bowel
habit abnormalities (diarrhoea or constipation), and sys-
temic manifestations, that is “foggy mind,” fatigue, muscle
and joint pain, leg or arm numbness, eczema and skin
rash, depression, and anemia. Similarly to patients with
CD, subjects with clinical manifestations compatible with
NCGS should start a gluten-free diet. Since it is still not
clear whether NCGS is a permanent or transient condi-
tion, reintroduction of gluten after 1-2 years on a gluten-
free diet can be considered [1, 2].
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Rotavirus is a double-stranded RNA virus belonging to
the family of Reoviridae.

The virus is transmitted by the faecal-oral route and
infects intestinal cells causing gastroenteritis. Rotaviruses
are the main cause of severe acute diarrhoea in children less
than 5 years of age worldwide [3]. They are responsible for
453,000 deaths worldwide each year, which in most cases
(85%) occur in developing countries [3]. The virus particle
is composed of six viral proteins (VPs) called VP1, VP2,
VP3, VP4, VP6, and VP7. Among these, the glycoprotein
VP7 is located on the outer surface of the virus determining
the specific G-type of the strain and plays a role in the devel-
opment of immunity to infection [4].

We have previously described the presence, in active
celiac disease (CD), of a subset of antitransglutaminase IgA
antibodies that recognizes the viral protein VP-7 and is able
to increase intestinal permeability and induce monocyte acti-
vation [5]. We then showed that the antirotavirus VP7 anti-
bodies may be even detected before the CD onset and the
detection of antitissue transglutaminase (tTG) and antiendo-
mysium antibodies, showing a predictive role [6]. In addi-
tion, we observed that these antibodies were able to induce
in human T84 intestinal cell line the modulation of genes
involved in biological processes that represents typical fea-
tures of CD [6]. Taken together, our data seem to provide a
link between rotavirus infection and CD.

In this paper, we aim at clarifying some aspects of the
pathogenesis of NCGS by a gene-array approach. In particu-
lar, we plan to verify the possibility of the involvement of an
autoimmune mechanism in the disease. In addition, we also
aim at investigating a possible involvement of rotavirus infec-
tion in the development of NCGS. For this purpose, we com-
pared the global panel of modulated genes in NCGS to the
dataset of human T84 intestinal cells treated with antirota-
virus VP7 antibodies, described in our previous work [6],
and to a dataset of acute phase of rotavirus infection, down-
loaded from the GEO (Gene Expression Omnibus) database,
searching for transcriptional profiles that may be associated
to viral infection.

2. Materials and Methods

2.1. Patients.We studied a cohort of 16 patients (6 males and
10 females, mean age: 27.3 years) affected by NCGS, attend-
ing the Unit of Autoimmune Diseases and the Immunology
Unit and Child Neuropsychiatry Unit at the University
Hospital of Verona, Italy.

All the enrolled subjects were recruited after informed
consent. Main symptoms were headache, dermatitis, chronic
urticaria, muscle and joint pain, bloating, abdominal pain,
diarrhoea, alternating bowel movements, and fatigue in a
variable combination.

Diagnosis of NCGS was established when all the fol-
lowing criteria were met: (1) exclusion of wheat allergy
by clinical history and determination of specific IgE; (2)
exclusion of celiac disease by absence of celiac-specific
antibodies tissue transglutaminase (tTG), endomysium
(EMA), and/or deamidated gliadin peptides (DGP); (3)
duodenal biopsy with a histological damage grade 0 to 1,

according to Marsh’s classification; (4) significant improve-
ment of symptoms on strict gluten-free diet and relapse of
symptoms after gluten reintroduction.

2.2. Detection of Anti-VP7 Peptide Antibodies. The ELISA test
for antibody binding to the synthetic peptides has been
carried out as already described elsewhere with minor modi-
fications [7]. The synthetic peptides were used at a concen-
tration of 20μ/mL in PBS to coat polystyrene plates
(Immulon 2HB, Thermo). For the detection of antirota-
virus VP7 peptide IgA antibodies, only the sera whose
OD readings were higher than the mean plus three stan-
dard deviations of each serum dilution of the control
group were considered positive. OD values higher than
0.140 were considered positive.

2.3. Gene Array. Peripheral blood cells were collected for
analysis of gene expression profiles on a gluten-containing
diet. PAXgene Blood RNA tubes (PreAnalytiX, Hombrechti-
kon, Switzerland) were used for blood collection and total
RNA was extracted according to the protocol supplied by
the manufacturer. Preparation of cRNA hybridization and
scanning of arrays for each samples were performed follow-
ing the manufacturer instructions (Affymetrix, Santa Clara,
CA, USA) by Cogentech Affymetrix microarray unit
(Campus IFOM IEO, Milan, Italy) using the Human
Genome U133A 2.0 GeneChip (Affymetrix). The gene
expression profiles were analysed using the GeneSpring
software version 12.1 (Agilent Technologies, Santa Clara,
CA, USA) that calculated a robust multiarray average of
background-adjusted, normalized, and log-transformed
intensity values applying the robust multiarray average
algorithm (RMA). The normalized data were transformed
to the log2 scale. The unpaired t-test was performed to
determine which genes were modulated at a significant
level (p ≤ 0 01), and p values were corrected for multiple
testing by using Bonferroni correction. Finally, statistically
significant genes were chosen for final consideration when
their expression was at least 1.5-fold different in the test
sample versus control sample. Genes that passed both
the p value and the FC restriction were submitted to func-
tional and pathway enrichment analysis according to the
Gene Ontology (GO) annotations employing the Panther
expression analysis tools (http://pantherdb.org/).

2.4. Protein-Protein Interaction (PPI) Network Construction
and Network Modular Analysis. All the possible interactions
among the protein products of DEGs were analysed with
Search Tool for the Retrieval of Interacting Genes (STRING
version 1.0; http://string-db.org/) a web-based database that
includes experimental as well as predicted interaction infor-
mation and covers more than 1100 sequenced organisms.
Only protein-protein interaction (PPI) pairs that were con-
firmed by experimental studies were selected, and a score of
≥0.7 for each PPI pair was used to build a PPI network.

Cytoscape software [8] was used to define the topology of
the built network, and the Molecular Complex Detection
(MCODE) [9] was used to find densely connected region
(modules) of the network that could be involved in the
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modulation of biological processes that are relevant for the
disease pathogenesis. To find locally dense regions of a graph,
MCODE applies a vertex-weighting scheme based on a clus-
tering coefficient that is a measure of the degree to which
nodes in a graph tend to cluster together.

The following settings in MCODE were used: degree
cutoff=2, K-core = 3, and max. depth= 100. Functional
enrichment for a given module was assessed quantitatively
using the Panther tool.

2.5. Analysis of the Association between DEGs and Human
Diseases. We used the software Ingenuity Pathway Analysis
(IPA, Ingenuity Systems) to evaluate diseases and disorders
that could be statistically significantly associated to gene
modulation observed in NCGS samples. The statistical signif-
icance of gene-disease associations was calculated in IPA by
the Fisher’s exact test (p ≤ 0 0001).

2.6. Detection of Soluble Mediators in GS Sera. Serum levels of
sCTLA-4, s PD-1, and sgp130/IL6ST were detected before
and after gluten-free diet using commercially available ELISA
kits according to the manufacturer’s instructions. ELISA kits
were purchased from Bender MedSystems (Milano, Italy)
(sCTLA-4), from R&D Systems (Minneapolis, United
States) (sgp130), and from EMELCA Bioscience (Clinge,
Netherlands) (sPD-1).

2.7. FACS Analysis. Cells collected from patients and normal
controls were cultured at a concentration of 1∗106 cells/mL in
2mL tubes containing 1mL of RPMI 1640+FCS 10%
(Lonza, Basel, CH). Cells were stimulated overnight with
Dynabeads Human T-Activator CD3/CD28 (Life Technolo-
gies, Carlsbad, CA, USA). The detection of IL-17 production
was analysed using the IL-17 Secretion Assay (Miltenyi Bio-
tec, Bergisch Gladbach, D) following the manufacturer’s
instruction. Briefly, cells were washed with 2mL of cold
buffer at 300×g for 5 minutes at 4°C, and the pellet was resus-
pended in 90μL of cold medium. Cells were then incubated
with 10μL of IL-17 Catch Reagent for 5 minutes in ice and
cultured in 1mL of warm medium at 37°C for 45 minutes
under slow continuous rotation. Cells were then washed with
cold buffer and resuspended in 75μL of cold buffer; 10μL of
IL-17 Detection Antibody APC, 10μL of anti-CD3 PerCP
(Becton Dickinson, Franklin Lakes, NJ, USA), and 5μL of
anti-CD4 APC-H7 (Becton Dickinson) monoclonal antibod-
ies were added. Incubation was carried out in ice for 10
minutes. Finally, cells were washed and resuspended in an
appropriate volume of PBS and acquired on a FACSCanto
II cytometer (Becton Dickinson). Analysis was performed
with FlowJo 9.3.3 software (Tree Star, Ashland, OR, USA).

2.8. Statistical Analysis. Data obtained from the analysis of
the soluble mediators CTLA-4, gp130, and PD-1 and from
the detection of antigliadin antibodies were submitted to sta-
tistical testing using the Wilcoxon nonparametric statistical
hypothesis test for paired samples.

Data obtained from the ELISA test for the detection of
antirotavirus VP7 peptide antibodies were submitted to
statistical testing using the Mann–Whitney nonparametric
test. Statistical analysis was performed using GraphPad

Prism Software version 5.00 (GraphPad Software, La Jolla,
California, USA, http://www.graphpad.com).

3. Results and Discussion

Many aspects of NCGS are still unknown; in particular, it
is still not clear whether the disease is permanent or tran-
sient or whether the disease has features of autoimmunity.
The pathogenesis of NCGS is also unclear and data
obtained so far suggest a prevalent activation of innate
immune responses [2].

We aimed at clarifying some aspects of NCGS pathogen-
esis using a gene array approach which we successfully used
in the study of many immune-mediated diseases [6, 10–12].

In order to identify specific gene signatures typically
associated with NCGS, we compared the gene expression
profiles of 8 PBC samples obtained from individual NCGS
patients with 10 PBC samples obtained from healthy age-
and sex-matched donors. We observed that the disease has
a profound impact on gene expression profiles since a large
number of differentially expressed genes (DEGs) (1293, rep-
resented by 1521 modulated probe sets) complied with the
Bonferroni-corrected p value criterion (p ≤ 0 01) and the fold
change criterion (FC≥ 1.5) showing robust and statistically
significant variation between healthy controls and NCGS
samples. In particular, 695 and 598 genes resulted to be up-
and downregulated, respectively (Additional Table 1).

DEGs were submitted to functional enrichment analysis
according to terms of the Gene Ontology (GO) biological
processes (BP) and canonical pathways. The most enriched
biological process was “immune system” followed by “intra-
cellular signal transduction” (Table 1). In addition, several
enriched terms were related to the immune response gene
category, including “leukocyte differentiation,” “leukocyte
activation involved in immune response,” “T cell differentia-
tion,” “neutrophil degranulation,” “adaptive immune
response,” and “defense response.” Interestingly, we observed
an enrichment in “cellular response to organic substance,”
“cellular response to endogenous stimulus,” and “viral pro-
cess.” The BP named “viral process” is defined by the Gene
Ontology Consortium as a “multi-organism process in which
a virus is a participant and the other participant is the host.”
This term is related to the infection of a host cell, the replica-
tion of the viral genome, the viral transcription, and the
assembly of progeny virus particles.

Pathway enrichment analysis showed that the most
enriched signaling pathways were “inflammation mediated
by chemokine and cytokine,” “apoptosis,” and “angiogene-
sis,” followed by “T cell activation” and “B cell activation”
(Table 1). Other enriched pathways were: “integrin signal-
ing,” “EGF receptor signaling,” “Toll-like receptor signaling,”
“PI3 kinase,” “interleukin signaling,” and JAK/STAT signal-
ing. Since the majority of the top-enriched functional classes
and pathways were related to the immune system, we
selected, within the entire data set, all modulated genes asso-
ciated to the “Immune response” GO term to better charac-
terize the immunological processes that are involved in
NCGS pathogenesis. Although both innate and adaptive
immunity play a crucial role in the development of CD,
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NCGS has been mainly associated with activation of the
innate immune response [2].

It is therefore surprising to notice that both transcripts
involved in the innate immune response as well as genes of
the adaptive immune response were well represented in our
dataset (Table 2).

In this regard, 14 genes involved in NK activity were
modulated in NCGS samples (i.e., LILRA1, LILRA2,
CLEC2D, and KLRC4). Moreover, several genes involved
in macrophage activation were modulated in NCGS
including TNFRSF10B, the ligand of the death receptors
TRAIL that play important roles in set up both innate
and adaptive immune responses against pathogens [13],
and the scavenger receptors MRC1/CD206 [14] and
MARCO, a member of the class A scavenger receptor fam-
ily strongly upregulated in MΦ by various microbial stim-
uli in a TLR-dependent manner [15].

Noteworthy, 38 genes prevalently related to B cell activity
(i.e., IL2RG, IL6R, KLF12, and CD27) were also modulated,
indicating an important role for this cell subset in NCGS,
20 genes involved in T cell activation were upregulated in

NCGS samples (i.e., CD28, CD3E, CD3G, and CTLA-4).
Remarkably, Th17-lymphocyte-related genes and transcripts
that can modulate Th17 cell development and functions were
overexpressed including IL4R, IL2RG, IL6ST, IL1B, IL7R,
STAT6, STAT5B, SOCS3, and CXCL2.

DEGs indicate therefore active involvement of both arms
of the adaptive immune response (i.e., T and B cells response)
and a prevalent upregulation of several Th17-related genes in
the T cell response category. It is well known that Th17 cells
play an important role in autoimmunity and have been
implicated in the pathogenesis of psoriasis and in the ampli-
fication of inflammation in rheumatoid synovitis and in
lupus nephritis [16–18].

In the NCGS dataset, 6 type I interferon inducible
genes (IFIG) were upregulated (IFNA17, IRF5, IRF3,
STAT2, STAT1, and LY9), thus indicating the presence
of an IFN type I signature, typically associated with auto-
immune disease such as systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA), Crohn’s disease, and
Sjogren syndrome [19–25].

In this respect, it is well known that Th17 cells and related
cytokines are crucial in promoting autoimmunity, in particu-
lar, when they act in synergy with type I IFN-driven inflam-
mation. In the presence of IFN type I signature, CCR6+

memory T-helper cells producing IL-17A, IL-17F, IL-21,
and/or IL-22 are increased in SLE, [26] indicating that, in
the pathogenesis of systemic autoimmune diseases, IFN type
I signature coacts with Th17 cells and related cytokines.

In order to further confirm our gene expression data on
overexpression of IFIG and Th17 pathways, we analysed
the presence of IL-17-producing CD4+ T cells and found a
significantly (p = 0 0159) increased percentage of these cells
in PBMC of patients with NCGS compared with normal
subjects (Figure 1).

The analysis of genes modulated in gluten sensitivity
was paralleled by the detection of some of the correspond-
ing soluble mediators in the sera of NCGS patients. We
analysed selected molecules that are widely recognized to
be associated to an autoimmune response, including
sCTLA-4, sPD-1, and sgp130/IL6ST. Figure 2 shows the
concentration of these molecules in the sera of NCGS
patients before and after gluten-free diet. The serum levels
of all the molecules tested were significantly higher in
NCGS before GFD than after GFD.

In order to gain further insights into the molecular mech-
anisms relevant in NCGS pathogenesis, we constructed a
protein-protein interaction (PPI) network starting from all
the 1293 DEGs. The resulted PPI network contained 853
nodes and 3512 edges (Figure 3). By performing a modular
analysis of the constructed PPI network, we were able to
identify clusters of the most densely interconnected nodes
(modules) and to extrapolate 15 main modules of genes dis-
playing the highest degree of connection. Figure 4 shows a
graphical representation of such modules, where the nodes
represent proteins and the edges indicate their relations.

All modules were submitted to enrichment analysis to
find enriched GO biological processes and pathways.

Among the 15 modules in particular, five (module 1, 3, 7,
10, and 14) showed a prevalent enrichment in BP and

Table 1: Biological processes and pathways that were enriched in
the NCGS dataset.

Biological processes p value∗

Immune system process 6.3× 10−26

Intracellular signal transduction 4.6× 10−16

Cellular response to organic substance 1.5× 10−13

Cell surface receptor signaling pathway 8.2× 10−10

Leukocyte differentiation 6.3× 10−9

Viral process 7.7× 10−9

Leukocyte activation involved in immune response 8.0× 10−8

Apoptotic process 2.2× 10−6

Cellular response to endogenous stimulus 3.0× 10−6

T cell differentiation 5.6× 10−5

Neutrophil degranulation 5.6× 10−5

Adaptive immune response 6.5× 10−5

Defense response 6.8× 10−5

Pathways p value∗

Inflammation mediated by chemokine and cytokine
signaling pathway

2.1× 10−7

Apoptosis signaling pathway 1.6× 10−4

Angiogenesis 4.1× 10−4

T cell activation 5.3× 10−4

B cell activation 5.7× 10−4

Integrin signaling pathway 7.8× 10−4

EGF receptor signaling pathway 4.0× 10−3

Toll like receptor signaling pathway 4.6× 10−3

PI3 kinase pathway 7.6× 10−3

Interleukin signaling pathway 8.1× 10−3

JAK/STAT signaling pathway 1.6× 10−2
∗Bonferroni corrected.
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pathways associated to the activation of T cells. Similarly, “B
cell activation” pathways were significantly enriched in mod-
ules 1, 9, 10, and 14. Interestingly, in modules 3, 10, and 11,
we observed an enrichment in the JAK–STAT signaling
pathway, which is highly relevant to human autoimmunity
[27] and plays a role in the intestinal mucosal immune
homeostasis as well as in intestinal epithelial repair and
regeneration [28]. We also observed that module 11 con-
tained several genes involved in Th-17 cell functions (i.e.,
IL2RG, IL4R, IL6ST, IL7R, SOCS3, STAT5B, and STAT6)
and several IFIG, including IFNA17, STAT1, and STAT2.
Other IFIG genes were ascribed to module 9 which also
shows an enrichment in BPs associated to type I interferon
signaling, including positive regulation of type I interferon
production, positive regulation of interferon-beta produc-
tion, and type I interferon biosynthetic process (Table 3).

Loss of the intestinal barrier integrity is a typical feature
of CD and represents an important mechanism of autoim-
munization through the passage of antigens across the intes-
tinal epithelium [29]. However, Sapone et al. [29] have
shown that NCGS patients have normal intestinal permeabil-
ity when compared to CD patients, as assessed by the
lactulose-mannitol test.

Indeed, in module 13, in which the most enriched BP was
“adherent junction assembly,” we observed a reduced expres-
sion of molecules involved in cell adhesion including CDH1
(epithelial cadherin), CTNNA1, VCL, and CTTN, a molecule
expressed on the apical surface of the polarized epithelium.
In the same module, we also observed underexpression of
Rac1, a critical regulator of intestinal epithelial barrier
functions [30] and EGF, known to protect intestinal bar-
rier integrity by stabilizing the microtubule cytoskeleton
[31] and upregulation of FYN and PIK3R1, both involved
in the signaling pathway by which IFNγ increases intesti-
nal permeability [32].

The gene expression data would therefore indicate dereg-
ulation of adherent junctions and altered intestinal

permeability also in NCGS, which seems to be in contrast
with the data of Sapone et al. Nevertheless, it is important
to point out that the lactulose-mannitol test may not be sen-
sitive enough to detect mild alterations of the intestinal bar-
rier function in patients with NCGS.

In module 12, the most enriched pathway was “inflam-
mation mediated by chemokine and cytokine signaling”; this
pathway was also enriched in modules 9, 10, and 11, which is
consistent with inflammatory/autoimmune origin of NCGS.

Moreover, modules 1, 2, 7, and 10 were enriched in BPs
related to viral infection including “viral process,” “viral gene
expression,” “intracellular transport of virus,” and “regula-
tion of defense response to virus.”

In addition, we observed that modules 10 and 11 showed
enrichments in the gamma interferon pathways typically
associated to the innate response to viruses [33].

Therefore, to further clarify the relationship between
viral infections and NCGS, we searched in the IPA software
database to find all diseases that are most likely to be statisti-
cally significantly associated to the genes modulated in the
NCGS dataset. We found that, in the resulting list of most
significantly associated diseases, “Infectious diseases” ranked
first and, among these, “Viral infection” showed the best sta-
tistical p value (Figure 5(a)). Moreover, we could find a clus-
ter of 134 DEGs that, in our NCGS dataset, showed a
modulation that was consistent with a process of viral infec-
tion (Figure 5(b)). Based on these data, we aimed at investi-
gating whether rotavirus, known to be linked to CD, [5, 6,
34] could also play a role in NCGS.

In the second part of our study, we made a compari-
son between the dataset obtained from our previous anal-
ysis of intestinal human T84 cells treated with anti-VP7
antibodies (that we indicate in this paper as “T84 dataset”)
and genes modulated in NCGS. We found that 529 genes
modulated in NCGS (accounting for the 41% of genes
modulated in this dataset) were also modulated in treated
T84 cells. Interestingly, several DEGs that were shared by
the two datasets are involved in BP that may be related
to the pathogenesis of celiac disease, including apoptosis,
inflammatory and immune response, cell proliferation, cell
differentiation, cell junctions, matrix metalloproteases,
receptors and signal transducers, cytoskeleton components,
ion transport and exchange, and EGF receptor pathway.
Table 4 shows a selection of genes ascribed to the above-
mentioned functional classes. As a whole in NCGS dataset,
the modulation of genes ascribed to the abovementioned
categories indicated an upregulation of apoptotic genes
accompanied by a downregulation of genes involved in cell
differentiation and an increased transcription of prolifera-
tive genes. All these observation are in agreement with
what we described on human T84 cells treated with anti-
rotavirus Vp7 peptide antibodies and are related to the
typical features of celiac disease. Indeed in CD, an
increased apoptosis is the main cause of villous atrophy
that is also sustained by a dysregulation of cell differentia-
tion [35]. Moreover, it has been observed that the increase
of intestinal cell proliferation leads to crypt hyperplasia
seen in celiac disease [35]. Other aspects of CD previously
observed in our T84 treated cells, that are paralleled by the
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Figure 1: Flow cytometric analysis of CD4+T cells releasing IL-17
in patients with NCGS. Panel displays the mean percentage of
CD4+T cells releasing IL-17 of 10 healthy donors and 8 NCGS
patients. PBMCs were stimulated overnight with anti-CD3/-
CD28-coated beads. p value calculated with the Mann–Whitney
nonparametric statistical test was 0.0159.
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Figure 2: Serum levels of selected soluble mediators in NCGS patients and in normal subject sera. The histograms represent the mean of the
results obtained in 20 healthy donors and in 16 NCGS patients. p values calculated with theWilcoxon nonparametric statistical test for paired
samples were: p < 0 0001 for sCTLA-4, p < 0 001 for sPD-1, and p < 0 05 for sgp130.

Figure 3: Protein-protein interaction (PPI) network of DEGs in NCGS patients.
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Figure 4: Modules originated from the network analysis of DEGs in NCGS patients.
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Table 3: Biological processes and pathways enriched in the 15 modules.

Biological processes
p

value
Pathways

p
value

M0

Exocytosis <0.001 None

Secretion by cell <0.001
Secretion <0.001
Vesicle-mediated transport 0.0018

Single-organism transport 0.0220

Single-organism localization 0.0308

M1

T cell receptor signaling pathway <0.001 T cell activation <0.001
Transmembrane receptor protein tyrosine kinase
signaling pathway

<0.001 B cell activation 0.0012

T cell costimulation <0.001 Cadherin signaling pathway 0.0056

Viral process <0.001 Integrin signaling pathway 0.0081

Fc-gamma receptor signaling pathway involved in
phagocytosis

<0.001

Peptidyl-tyrosine modification 0.0016

Adaptive immune response 0.0017

Positive regulation of antigen receptor-mediated
signaling pathway

0.0029

Positive regulation of alpha-beta T cell proliferation 0.0038

Phosphatidylinositol phosphorylation 0.0060

Phosphatidylinositol-mediated signaling 0.0162

Positive regulation of calcium-mediated signaling 0.0192

T cell selection 0.0244

Leukocyte migration 0.0303

Interleukin-2-mediated signaling pathway 0.0324

MAPK cascade 0.0371

Positive regulation of immune effector process 0.0466

Positive regulation of defense response 0.0485

M2

mRNA export from nucleus <0.001 None

Spliceosomal complex assembly <0.001
Termination of RNA polymerase II transcription <0.001
Regulation of mRNA splicing, via spliceosome <0.001
Positive regulation of RNA splicing <0.001
mRNA 3′-end processing <0.001
Regulation of gene silencing by miRNA <0.001
tRNA export from nucleus 0.0010

Viral gene expression 0.0054

Intracellular transport of virus 0.0078

Protein sumoylation 0.0294

Regulation of cellular response to heat 0.0310

Fibroblast growth factor receptor signaling pathway 0.0414

M3

Positive regulation of T cell activation 0.0035 T cell activation <0.001
Interleukin-2-mediated signaling pathway 0.0065 Interleukin signaling pathway <0.001
Interleukin-4-mediated signaling pathway 0.0065 PDGF signaling pathway 0.0010

Protein phosphorylation 0.0349 Integrin signaling pathway 0.0017
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Table 3: Continued.

Biological processes
p

value
Pathways

p
value

JAK/STAT signaling pathway 0.0057

Hypoxia response via HIF activation 0.0110

Insulin/IGF pathway-protein kinase B signaling cascade 0.0136

p53 pathway feedback loops 2 0.0176

PI3 kinase pathway 0.0182

VEGF signaling pathway 0.0238

Endothelin signaling pathway 0.0284

p53 pathway 0.0290

M4

Pospholipase C-activating G-protein-coupled receptor
signaling pathway

<0.001 Heterotrimeric G-protein signal. pathway-Gq α and Go α med.
pathway

<0.001

G-protein coupled acetylcholine receptor signaling
pathway

<0.001

Activation of phospholipase C activity <0.001 PI3 kinase pathway <0.001
Positive regulation of cytosolic calcium ion
concentration

<0.001 Endothelin signaling pathway 0.0013

Adenylate cyclase-modulating G-protein-coupled
receptor signaling pathway

0.0048 Wnt signaling pathway 0.0015

M5

Translational initiation <0.001 None

Nuclear-transcribed mRNA catabolic process, nonsense
mediated decay

<0.001

SRP-dependent cotranslational protein targeting to
membrane

<0.001

rRNA processing <0.001
Ribosomal small subunit assembly 0.0083

M6

Regulation of small GTPase-mediated signal
transduction

<0.001 None

Positive regulation of GTPase activity <0.001
Small GTPase-mediated signal transduction <0.001
Actin cytoskeleton organization 0.0108

M7

T cell costimulation <0.001 T cell activation <0.001
Phosphatidylinositol-mediated signaling <0.001 Integrin signaling pathway 0.0041

T cell receptor signaling pathway <0.001
Phosphatidylinositol phosphorylation <0.001
Transmembrane receptor protein tyrosine kinase
signaling pathway

0.0016

Peptidyl-tyrosine autophosphorylation 0.0033

Viral process 0.0035

Fc receptor signaling pathway 0.0050

Regulation of apoptotic process 0.0055

Leukocyte differentiation 0.0122

Leukocyte migration 0.0232

Lymphocyte activation 0.0237

B cell receptor signaling pathway 0.0256

Positive regulation of defense response 0.0340
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Table 3: Continued.

Biological processes
p

value
Pathways

p
value

M8

Response to unfolded protein <0.001 None

Response to topologically incorrect protein <0.001
Chaperone-mediated protein complex assembly <0.001
Protein folding <0.001
Protein transmembrane transport <0.001
Response to stress <0.001
M9

Activation of innate immune response <0.001 Toll-like receptor signaling pathway <0.001
Positive regulation of innate immune response <0.001 Ras pathway <0.001
Toll-like receptor signaling pathway <0.001 Apoptosis signaling pathway <0.001
Fc-epsilon receptor signaling pathway 0.0020 T cell activation <0.001
MAPK cascade 0.0026 p38 MAPK pathway <0.001
Positive regulation of type I interferon production 0.0029 Oxidative stress response <0.001
Positive regulation of cytokine production 0.0035 Angiogenesis <0.001
TRIF-dependent toll-like receptor signaling pathway 0.0136 B cell activation <0.001
Positive regulation of interferon-beta production 0.0202 FGF signaling pathway <0.001
Response to lipopolysaccharide 0.0268 EGF receptor signaling pathway <0.001
Type I interferon biosynthetic process 0.0419 Integrin signaling pathway 0.0024

Inflammation mediated by chemokine and cytokine signaling
pathway

0.0079

Interleukin signaling pathway 0.0104

M10

T cell receptor signaling pathway <0.001 T cell activation <0.001
T cell costimulation <0.001 EGF receptor signaling pathway <0.001
Fc-epsilon receptor signaling pathway <0.001 Integrin signaling pathway <0.001
phosphatidylinositol phosphorylation <0.001 p53 pathway feedback loops 2 <0.001
Peptidyl-tyrosine autophosphorylation <0.001 VEGF signaling pathway <0.001
Fc-gamma receptor signaling pathway involved in
phagocytosis

<0.001 B cell activation <0.001

Leukocyte migration <0.001 Ras pathway <0.001
Growth hormone receptor signaling pathway <0.001 Angiogenesis <0.001
Regulation of defense response to virus <0.001

Insulin/IGF pathway-protein kinase B signaling cascade
<0.001

Innate immune response <0.001
Positive regulation of MAP kinase activity <0.001 Inflammation mediated by chemokine and cytokine signaling

pathway
<0.001

T cell differentiation <0.001
Regulation of apoptotic process <0.001 PI3 kinase pathway <0.001
JAK–STAT cascade 0.0011 p53 pathway <0.001
Positive regulation of immune effector process 0.0031 Interferon-gamma signaling pathway <0.001
MAPK cascade 0.0056 FGF signaling pathway <0.001
Adaptive immune response 0.0088 Endothelin signaling pathway 0.0101

B cell receptor signaling pathway 0.0121 JAK/STAT signaling pathway 0.0176

Phosphatidylinositol 3-kinase signaling 0.0214

Stimulatory C-type lectin receptor signaling pathway 0.0363

Innate immune response activ. cell surface receptor
signal. pathway

0.0387
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Table 3: Continued.

Biological processes
p

value
Pathways

p
value

M11

Cellular response to cytokine stimulus <0.001 JAK/STAT signaling pathway <0.001
JAK–STAT cascade involved in growth hormone
signaling pathway

<0.001 Interleukin signaling pathway <0.001

Positive regulation of cytokine production <0.001 PDGF signaling pathway <0.001
Response to interleukin-2 <0.001 Interferon-gamma signaling pathway <0.001
Positive regulation of T cell differentiation <0.001 EGF receptor signaling pathway <0.001
Positive regulation of tyrosine phosphorylation of STAT
protein

<0.001 Integrin signaling pathway <0.001

Regulation of interferon-gamma-mediated signaling
pathway

<0.001 Inflammation mediated by chemokine and cytokine signaling
pathway

<0.001

MAPK cascade <0.001
Adaptive immune response <0.001 p53 pathway feedback loops 2 0.0025

Innate immune response 0.0014 PI3 kinase pathway 0.0027

Positive regulation of T cell proliferation 0.0022 VEGF signaling pathway 0.0045

Positive regulation of inflammatory response 0.0025 B cell activation 0.0045

Antigen receptor-mediated signaling pathway 0.0072 Ras pathway 0.0050

T cell differentiation 0.0085 T cell activation 0.0078

Inflammatory response 0.0194 Cadherin signaling pathway 0.0201

Positive regulation of antigen receptor-mediated
signaling pathway

0.0227

Transcription factor import into nucleus 0.0313

T cell costimulation 0.0396

M12 Inflammation mediated by chemokine and cytokine signaling
pathway

<0.001
G-protein-coupled receptor signaling pathway <0.001
Chemokine-mediated signaling pathway <0.001

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs
alpha-mediated pathway

0.0473

Positive regulation of cytosolic calcium ion
concentration

<0.001

Inflammatory response <0.001
Cell chemotaxis <0.001
Positive regulation of neutrophil chemotaxis 0.0136

Response to lipopolysaccharide 0.0268

M13

Adherens junction assembly <0.001 Integrin signaling pathway <0.001
Phosphatidylinositol phosphorylation 0.0015 Cadherin signaling pathway <0.001
Vesicle-mediated transport 0.0026

Positive regulation of protein localization to nucleus 0.0043

Actin cytoskeleton organization 0.0105

Cell differentiation 0.0308

M14

Positive regulation of T cell activation 0.0035 T cell activation <0.001
Interleukin-2-mediated signaling pathway 0.0065 Integrin signaling pathway <0.001
Interleukin-4-mediated signaling pathway 0.0065 Angiogenesis 0.0032

Regulation of immune response 0.0430 Toll like receptor signaling pathway 0.0269

VEGF signaling pathway 0.0387

B cell activation 0.0387

Ras pathway 0.0431

15Journal of Immunology Research



gene modulated observed in NCGS, are the upregulation
of members of the epidermal growth factor receptor
(EGFR) signaling pathway and the concomitant downreg-
ulation of cell adhesion molecules beside a deregulation
of ion transport. Noteworthy, the activation of EGFR sig-
naling has been already observed in CD [36], and

dysfunction of cell adhesion and transport are typical fea-
tures of epithelial cells from active CD [37].

In this regard, it is worthwhile mentioning that patients
with NCGS have normal to mildly inflamed mucosa (Marsh
0-1), while partial or subtotal villous atrophy and crypt
hyperplasia are hallmarks of CD. Nevertheless, we cannot

Top diseases associated with genes modulated in NCGS (p value < 0.0001)

Name
Infectious diseases

Immunological diseases

Hematological diseases

Infection by RNA virus
Infection of cells

Cancer

Organismal injury and abnormalities

Viral infection

(a)

TGBR2, TMEM63A, TMPO, TNFRF1B, TNFSF10, TNK1, TTC3, TWF1, UBE2H, ZBP1, ZNF480
SP110, SPEN, SPN, SPTAN1, SPTBN1, SRPK1, SRPK2, SRRM2, SRRT, STIP1, SUCLG2, TAGLN2, TBK1, TCF3, TECR,
RPS10, RPS14, S100A8, SELPLG, SF3B1, SIGMAR1, SIKE1, SLAMF1, SLC4A7, SLFN12, SMAD3, SNRNP70, SOCS1,
PPP4C, PRDM2, PRKCH, PRPF6, PYCARD, RAB2A, RAB6A, RAD21, RAD23A, RANBP2, RBM25, RBM5, RELA,
MAP2K2, MARK2, MAT2A, MVP, NEK9, NF2, P2RY10, PIK3R5, PIP5K1A, PLCG1, PMS1P1, POLR2A, PPM1D,
IL15, IL18, IL1B, IRF7, JUN, KAT6A, KIF3A, LAMA2, LAPTM5, LARP1, LCK, LGALS1, LMNA, LPAR2, LRRAP1,
HNRNPC, HNRNPH1, HNRNPM, HNRNPU, HSP90AA1, HSP90AB1, HSP90B1, HSPD1, HTATSF1, IFIH1, IKBKB,
DNMT3A, DPP4, EEA1, ERI3, FBXW11, FCGR1A, FGFR2, FXR1, FYN, GBP1, GRK6, GTF2I, H3F3A, HIP1R, HIPK1,
CD165, CD44, CDK2, CLU, COPA, CREB1, CXCL10, CXCR6 DAZAP2, DDX17, DDX6, DHX9, DIAPH1, DNAJB1,

Genes modulated consistently with viral infection (n = 134)

ACTR2, AES, AKTIP, ANXA5, AP1G2, AP2M1, ARF1, ARID1A, ATP6V0E1, BST2, BTG2, CALCOCO1, CCR4, CCT2,

(b)
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Figure 5: (a) List of diseases which are most likely to be statistically significantly associated and compatible with the transcriptional profile
observed in NCGS. (b) DEGs in NCGS showing a modulation consistent with a viral infection process. (c) Detection of antibodies
directed against the rotavirus VP7 peptide in the sera of patients with NCGS. Each circle represents a measurement for one patient,
and the dashed horizontal line indicates the threshold for positivity (O.D. 0.140). The statistical p value was calculated with the
Mann–Whitney test (p < 0 0001).
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Table 4: Selection of DEGs in NCGS that are also modulated in human T84 cells after stimulation with anti-VP7 rotavirus peptide antibodies.

Gene symbol Accession number Gene title FC NCGS PBCs FC T84 treated cells

Apoptosis

SOCS3 NM_003955 Suppressor of cytokine signaling 3 1.83 2.75

ANXA6 NM_001155 Annexin A6 1.57 2.72

SOS2 NM_006939 Son of sevenless homolog 2 (Drosophila) 1.90 1.75

DEDD AF064605 Death effector domain containing 1.78 1.47

Immune response

IFNA17 NM_021268 Interferon, alpha 17 1.59 1.56

IL6R S72848 Interleukin 6 receptor 1.79 2.76

IRF5 NM_03264335 Interferon regulatory factor 5 1.52 1.52

CD84 AF054818 CD84 molecule 2.55 3.40

Inflammatory response

IL1B NM_000576 Interleukin 1, beta 1.52 1.80

IL24 NM_006850 Interleukin 24 2.84 2.19

IL2RA K03122 Interleukin 2 receptor, alpha 1.86 1.48

S100A8 AW238654 S100 calcium-binding protein A8 3.65 1.86

Cell proliferation

FGFR2 NM_022975 Fibroblast growth factor receptor 2 1.56 2.89

RAC2 NM_002872 Ras-related C3 botulinum toxin substrate 2 2.31 1.53

CDK2 AB012305 Cyclin-dependent kinase 2 1.63 1.78

DLG1 AL121981 Discs, large homolog 1 (Drosophila) 1.57 1.74

Cell differentiation

GAS7 BC006454 Growth arrest-specific 7 −2.03 −1.90
SRD5A1 NM_001047 Steroid-5-alpha-reductase, alpha polypeptide 1 −2.53 −1.54
VAMP5 NM_006634 Vesicle-associated membrane protein 5 −1.71 −1.58
ZAK NM_016653 Sterile alpha motif and leucine zipper containing kinase AZK −2.02 −1.71
Cell–cell junctions

VCL NM_014000 Vinculin −1.68 −1.56
CTNND1 NM_001331 Catenin (cadherin-associated protein), delta 1 −2.33 −1.75
CTNNA1 NM_001903 Catenin (cadherin-associated protein), alpha 1, 102 kDa −2.49 −1.57
COL8A2 NM_005202 Collagen, type VIII, alpha 2 −1.62 −1.64
Metalloproteases

ADAM8 AI814527 ADAM metallopeptidase domain 8 1.94 1.57

ADAM9 NM_003816 ADAM metallopeptidase domain 9 2.81 1.48

ADAM17 AI797833 ADAM metallopeptidase domain 17 1.51 1.56

Receptors and signal transduction

IL2RA K03122 Interleukin 2 receptor, alpha 1.86 1.48

IRF5 NM_03264335 Interferon regulatory factor 5 1.52 1.52

IL6R S72848 Interleukin 6 receptor 1.79 2.76

Cytoskeleton

FGD6 NM_018351 FYVE, RhoGEF, and pH domain containing 6 −2.40 −1.48
ABLIM3 NM_014945 Actin-binding LIM protein family, member 3 1.86 1.49

PFN2 NM_002628 Profilin 2 1.51 1.47

Ion transport

SLC24A1 AF026132 Solute carrier family 24 (Na/K/Ca exchanger), member 1 1.59 1.95

SLC30A1 AI972416 Solute carrier family 30 (zinc transporter), member 1 1.94 1.55

SLC4A4 AF069510 Solute carrier family 4, NaHCO3 cotransporter, member 4 1.52 1.92

EGFR signaling pathway

AKT2 NM_001626 v-akt murine thymoma viral oncogene homolog 2 2.36 2.19

PIK3R1 NM_181523 Phosphoinositide-3-kinase, regulatory subunit 1 (alpha) 2.76 1.54

PTPN12 S69182 Protein tyrosine phosphatase, nonreceptor type 12 2.27 1.50
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Table 5: Genes modulated in the three datasets playing a role in selected GO BPs related to the viral infection process.

Gene symbol Gene title FC

NCGS dataset

Viral transcription/gene expression

RANBP2 RAN-binding protein 2 1.98

RPL27A Ribosomal protein L27a 3.22

RPL37A Ribosomal protein L37a 2.94

RPLP2 Ribosomal protein, large, P2 2.15

RPS10 Ribosomal protein S10 2.66

RPS11 Ribosomal protein S11 2.49

TPR Translocated promoter region, nuclear basket protein 4.40

Response to virus

RELA v-rel reticuloendotheliosis viral oncogene homolog A (avian) 1.54

IKBKB Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase beta 2.69

IRF5 Interferon regulatory factor 5 1.52

IFNA17 Interferon, alpha 17 1.59

DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 3.22

STAT2 Signal transducer and activator of transcription 2, 113 kDa 1.59

STAT1 Signal transducer and activator of transcription 1, 91 kDa 2.73

IRF3 Interferon regulatory factor 3 1.67

DDX17 DEAD (Asp-Glu-Ala-Asp) box helicase 17 4.75

Viral life cycle

TPR Translocated promoter region, nuclear basket protein 4.40

ATG16L1 Autophagy-related 16-like 1 (S. cerevisiae) 1.87

HSP90AB1 Heat shock protein 90 kDa alpha (cytosolic), class B member 1 1.87

RANBP2 RAN-binding protein 2 1.98

DPP4 Dipeptidyl-peptidase 4 1.61

DDX6 DEAD (Asp-Glu-Ala-Asp) box helicase 6 4.70

HTATSF1 HIV-1 Tat specific factor 1 2.23

SLAMF1 Signaling lymphocytic activation molecule family member 1 1.65

T84 dataset

Viral transcription/gene expression

RPL27A Ribosomal protein L27a 1.68

RPS2 Ribosomal protein S2 1.99

RPS6 Ribosomal protein S6 1.51

Response to virus

IFIH1 Interferon induced with helicase C domain 1 1.52

IFNA7 Interferon, alpha 7 1.53

IFIT3 Interferon-induced protein with tetratricopeptide repeats 3 1.46

IFNA4 Interferon, alpha 4 1.73

IFI44 Interferon-induced protein 44 1.46

IFNGR1 Interferon gamma receptor 1 1.67

IFNA17 Interferon, alpha 17 1.56

Viral life cycle

CTBP1 C-terminal-binding protein 1 1.58

ADRBK1 Adrenergic, beta, receptor kinase 1 1.46

HCRP1 Hepatocellular carcinoma-related HCRP1 1.61

C9Orf28 Chromosome 9 open reading frame 28 1.56

18 Journal of Immunology Research



exclude that some NCGS patients, especially those positive
for HLA-DQ2 and/or DQ8, may switch to classical CD in
the course of the follow-up.

Since a large part of DEGs in the NCGS paralleled the
modulation of genes seen in human T84 cells treated with
antirotavirus Vp7 peptide antibodies, we next aimed at iden-
tifying the presence of such antibodies in sera of NCGS
patients. We therefore tested in ELISA assay the sera from
16 NCGS patients and 20 healthy subjects for the detection
of antirotavirus VP7 peptide antibodies. We found that these
antibodies were present in 6 out of 16 (37%) NCGS patients
while were not detected in the sera of healthy subjects.
Figure 5(c) shows that the levels of such antibodies are signif-
icantly different in the two set of tested samples (p < 0 0001).
The detection of these antibodies in NCGS patients may be
relevant to the pathogenesis of the NCGS given their ability
to modulate sets of genes in intestinal epithelial cells as we
previously demonstrated [6].

Taken together, the modulation of highly connected
genes associated to the viral infection process and the pres-
ence of anti-VP7 antibodies in the sera of some NCGS
patients may suggest that a link also exists between immune
response to rotavirus infection and NCGS.

In this perspective, since anti-VP7 rotavirus antibodies
are often present before the onset of CD, preceding the detec-
tion of celiac specific autoantibodies, [6] it is tempting to
speculate that NCGS patients with CD genetic predisposition

(DQ2/DQ8) and presence of anti-VP7 antibodies may
develop CD in the course of the follow-up.

Therefore, to further clarify the relationship between
rotavirus infection and NCGS, we decided to perform an
integrative bioinformatics analysis using the dataset
GSE50628 downloaded from GEO (Gene Expression
Omnibus) database (http://www.ncbi.nlm.nih.gov/geo/)
that included samples of peripheral blood cells from
patients affected by acute rotavirus infection (named in
the paper “Rotavirus infection dataset”). This dataset
was analysed to detect significantly modulated genes
(Additional Table 2), and a comprehensive GO analysis
was carried out on all datasets including NCGS, Rotavirus
infection, and T84 datasets that we analysed in our previ-
ous work [6].

We then searched on the four datasets for the presence
of genes associated to GO terms containing the words
“virus” and/or “viral” and we found in all datasets a great
number of such terms to which modulated genes were
connected/related.

The searched terms explored a wide range of biological
processes associated to viral infection from the entry of
virus in the host cell, viral transcription and gene expres-
sion, modulation of host physiology by virus to cellular
response to virus.

All the GO terms retrieved in the three datasets are listed
in Additional Table 3.

Table 5: Continued.

Gene symbol Gene title FC

Rotavirus infection dataset

Viral transcription/gene expression

NUP58 Nucleoporin 58 kDa 6.38

RPS16 Ribosomal protein S16 2.10

DENR Density-regulated protein 2.11

Response to virus

XPR1 Xenotropic and polytropic retrovirus receptor 1 1.72

CNOT7 CCR4-NOT transcription complex subunit 7 3.54

CD40 CD40 molecule, TNF receptor superfamily member 5 2.72

ITCH Itchy E3 ubiquitin protein ligase 2.26

ARF1 ADP-ribosylation factor 1 1.91

BCL2L11 BCL2-like 11 (apoptosis facilitator) 3.21

BCL2L1 BCL2-like 1 3.37

IKBKE Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase ɛ 1.50

DDX17 DEAD (Asp-Glu-Ala-Asp) box helicase 17 2.13

Viral life cycle

NUP153 Nucleoporin 153 kDa 2.01

VPS37A Vacuolar protein sorting 37 homolog A (S. cerevisiae) 1.90

XPR1 Xenotropic and polytropic retrovirus receptor 1 1.72

UBB Ubiquitin B 1.75

ITCH Itchy E3 ubiquitin protein ligase 2.26

NUP58 Nucleoporin 58 kDa 6.38

TNFRSF4 Tumor necrosis factor receptor superfamily, member 4 1.94

SCARB2 Scavenger receptor class B, member 2 1.96
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Table 6: Selection of genes modulated in human T84 cells after stimulation with anti-VP7 rotavirus peptide antibodies, involved in immune
response and in molecular signaling related to the viral infection process.

Gene symbol Gene title FC

Immune response

CCR2 Chemokine (C-C motif) receptor 2 −1.48
CXCL1 Chemokine (C-X-C motif) ligand 1 1.81

CXCL13 Chemokine (C-X-C motif) ligand 13 −5.52
GATA3 GATA-binding protein 3 −6.62
TROVE2 TROVE domain family, member 2 −1.64
ICOSLG Inducible T cell costimulator ligand 2.51

FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64) 2.00

FOXP3 Forkhead box P3 1.49

ULBP1 UL16-binding protein 1 −1.77
ITGA4 Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) 1.48

CXCL9 Chemokine (C-X-C motif) ligand 9 1.59

CSF3 Colony-stimulating factor 3 (granulocyte) 1.46

IL6 Interleukin 6 (interferon, beta 2) 1.51

CD84 CD84 molecule 3.40

FCGR2B Fc fragment of IgG, low affinity IIb, receptor (CD32) 1.77

LAT2 Linker for activation of T cells family, member 2 1.85

C7 Complement component 7 3.11

CCR1 Chemokine (C-C motif) receptor 1 3.27

CCR3 Chemokine (C-C motif) receptor 3 2.80

CFP Complement factor properdin 2.92

IL24 Interleukin 24 2.19

IL8 Interleukin 8 1.86

CXCL10 Chemokine (C-X-C motif) ligand 10 1.82

IL1F7 Interleukin 1 family, member 7 (zeta) −2.26
IKBKB Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase beta −2.25
CCL11 Chemokine (C-C motif) ligand 11 1.96

Type I interferon signaling

Cellular response to interferon alpha

FCAR Fc fragment of IgA, receptor for 2.15

Type I interferon signaling

IFNA16 Interferon, alpha 16 1.58

STAT1 Signal transducer and activator of transcription 1, 91 kDa −1.46
IFNA17 Interferon, alpha 17 1.56

YY1 YY1 transcription factor −2.24
IFNA4 Interferon, alpha 4 1.73

IRF8 Interferon regulatory factor 8 interferon regulatory factor 8 −1.68
IFNA5 Interferon, alpha 5 −2.85
IRF2 Interferon regulatory factor 2 1.58

IFNA8 Interferon, alpha 8 2.23

IRF5 Interferon regulatory factor 5 1.52

IFI6 Interferon, alpha-inducible protein 6 1.56

IFNA6 Interferon, alpha 6 2.08

Positive regulation of interferon alpha production

IRF5 Interferon regulatory factor 5 1.52

Positive regulation of interferon beta production

DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked −1.49
IRF5 Interferon regulatory factor 5 1.52

Negative regulation of interferon beta production

LILRB1 Leukocyte immunoglobulin-like receptor, subfamily B, member 1 −1.60
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Table 6: Continued.

Gene symbol Gene title FC

Positive regulation of Type I interferon production

IFI16 Interferon, gamma-inducible protein 16 −1.68
CREBBP CREB-binding protein (Rubinstein-Taybi syndrome) 1.51

Negative regulation of Type I interferon production

CYLD Cylindromatosis (turban tumor syndrome) −3.04
Gamma interferon signaling

Cellular response to Interferon Gamma signaling

FCAR Fc fragment of IgA, receptor for 2.15

MRC1 Mannose receptor, C type 1 2.52

SYNCRIP Synaptotagmin-binding, cytoplasmic RNA-interacting protein −1.69
CCL8 chemokine (C-C motif) ligand 8 1.63

Interferon gamma signaling

STAT1 Signal transducer and activator of transcription 1, 91 kDa −1.46
MID1 Midline 1 (Opitz/BBB syndrome) −1.99
HLA-DRB4 Major histocompatibility complex, class II, DR beta 4 2.39

SDK1 Sidekick homolog 1 (chicken) 1.61

IFNGR1 Interferon gamma receptor 1 interferon gamma receptor 1 1.67

Negative regulation of gamma interferon production

LILRB1 Leukocyte immunoglobulin-like receptor, subfamily B, member 1 −1.60
CD244 CD244 molecule, natural killer cell receptor 2B4 −1.69
IL10 Interleukin 10 −3.56

Positive regulation of gamma interferon production

FOXP3 Forkhead box P3 1.49

IL1B Interleukin 1, beta 1.80

Toll-like receptor signaling

TANK TRAF family member-associated NFKB activator −1.91
CHUK Conserved helix-loop-helix ubiquitous kinase −1.72
ELK1 ELK1, member of ETS oncogene family 3.70

MAP3K8 Mitogen-activated protein kinase kinase kinase 8 −2.16
TLR6 Toll-like receptor 6 2.43

TLR1 Toll-like receptor 1 1.57

TLR7 Toll-like receptor 7 −1.64
MAP3K7 Mitogen-activated protein kinase kinase kinase 7 −1.89
LY96 Lymphocyte antigen 96 −1.81
NFKB2 Nuclear factor of kappa light polypeptide gene enhancer in B cells 2 (p49/p100) 1.54

REL v-rel reticuloendotheliosis viral oncogene homolog (avian) −1.82

PTGS2
Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and

cyclooxygenase)
1.76

TNFAIP3 Tumor necrosis factor, alpha-induced protein 3 1.73

MAP2K3 Mitogen-activated protein kinase kinase 3 1.59

IKBKB Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase beta −2.25
TLR3 Toll-like receptor 3 −2.03
IFNB1 Interferon, beta 1, fibroblast −1.84
IRAK3 Interleukin-1 receptor-associated kinase 3 1.70

TLR4 Toll-like receptor 4 1.46

IKBKE Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase epsilon 2.06

MAP2K2 Mitogen-activated protein kinase kinase 2 1.98

TLR2 Toll-like receptor 2 −2.30
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Table 7: Selection of genes modulated in PBCs in course of the acute phase of rotavirus infection, involved in immune response and in
molecular signaling related to the viral infection process.

Gene symbol Gene title FC

Immune response

ADGRE3 Adhesion G protein-coupled receptor E3;ADGRE3;ortholog −3.35
ADIPOQ Adiponectin, C1Q and collagen domain containing −1.60
BLK BLK proto-oncogene, Src family tyrosine kinase 1.72

BRAF B-Raf proto-oncogene, serine/threonine kinase 1.57

BTK Bruton agammaglobulinemia tyrosine kinase −1.59
C1QTNF9 C1q and tumor necrosis factor related protein 9 −1.69
CD109 CD109 molecule −1.84
CD79B CD79b molecule, immunoglobulin-associated beta −1.67
CLEC7A C-type lectin domain family 7, member A −1.62
CMIP c-Maf inducing protein −3.50
CSF2RA Colony-stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage) −2.30
CXCL2 Chemokine (C-X-C motif) ligand 2 −3.76
CXCL8 Chemokine (C-X-C motif) ligand 8 −8.65
FCER1A Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide −5.64
HCST Hematopoietic cell signal transducer 1.85

IL18BP Interleukin 18 binding protein 1.56

JAG1 Jagged 1 −2.06
KLRB1 Killer cell lectin-like receptor subfamily B, member 1 −5.99
MAP3K11 Mitogen-activated protein kinase kinase kinase 11 1.55

MASP1 Mannan-binding lectin serine peptidase 1 −1.50
MR1 Major histocompatibility complex, class I-related 8.43

PLEKHN1 Pleckstrin homology domain containing, family N member 1 −1.99
PPP2R2C Protein phosphatase 2, regulatory subunit B, gamma −1.84
PPP3CA Protein phosphatase 3, catalytic subunit, alpha isozyme −1.89
PSME3 Proteasome activator subunit 3 1.91

PVR Poliovirus receptor −1.59
STAT5B Signal transducer and activator of transcription 5B −2.06
TNFRSF10C Tumor necrosis factor receptor superfamily, member 10c decoy without an intracellular domain −1.75
TNFRSF4 Tumor necrosis factor receptor superfamily, member 4 1.94

Type I interferon signaling

Positive regulation of Type I interferon production

EP300 E1A-binding protein p300 −1.56
POLR3G Polymerase (RNA) III (DNA directed) polypeptide G (32kD) −1.98
CREBBP CREB-binding protein −1.83
LRRFIP1 Leucine rich repeat (in FLII) interacting protein 1 −2.14
SOCS1 Suppressor of cytokine signaling 1 2.32

Negative regulation of Type I interferon production

UBB Ubiquitin B 1.75

ITCH Itchy E3 ubiquitin protein ligase 2.26

TAX1BP1 Tax1 (human T cell leukemia virus type I) binding protein 1 −4.01
Negative regulation of Type I interferon pathway

PTPN2 Protein tyrosine phosphatase, nonreceptor type 2 2.10

Positive regulation of interferon beta production

ZBTB20 Zinc finger and BTB domain containing 20 4.27

Negative regulation of interferon Beta production

PTPRS Protein tyrosine phosphatase, receptor type, S −2.00
CACTIN Cactin, spliceosome C complex subunit −2.53
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Table 5 shows selected genes modulated in the three
datasets that are ascribed to the most representative GO
terms, including viral transcription, viral gene expres-
sion, response to virus, viral genome replication, and
viral life cycle.

Moreover, the GO analysis of the abovementioned data-
sets was complemented by searching for transcripts involved
in immune response.

In the “T84 dataset,” we found upregulation for the T
cell costimulatory molecule ICOSLG, the transcriptional

Table 7: Continued.

Gene symbol Gene title FC

Cellular response to interferon alpha

TPR Translocated promoter region, nuclear basket protein −2.55
Negative regulation of interferon alpha production

PTPRS Protein tyrosine phosphatase, receptor type, S −2.00
Type I interferon signaling pathway

JAK1 Janus kinase 1 1.79

IFI27 Interferon, alpha-inducible protein 27 75.26

IFI27L2 Interferon, alpha-inducible protein 27-like 2 −1.59
IKBKE Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase epsilon 1.50

TPR Translocated promoter region, nuclear basket protein −2.55
Positive regulation of Type I interferon pathway

MME Membrane metallo-endopeptidase −5.54
Gamma interferon signaling

JAK1 Janus kinase 1 1.79

HLADQB1 Major histocompatibility complex, class II, DQ beta 1 −36.43
HLADQA1 Major histocompatibility complex, class II, DQ alpha 1 −37.95
PIAS3 Protein inhibitor of activated STAT 3 2.11

HLADRB1 Major histocompatibility complex, class II, DR beta 1 −10.91
MAPK8 Mitogen-activated protein kinase 8 −2.28
MAPK1 Mitogen-activated protein kinase 1 −2.23
Regulation of interferon gamma signaling pathway

PTPN2 Protein tyrosine phosphatase, nonreceptor type 2 2.10

Positive regulation of interferon gamma production

PDE4B Phosphodiesterase 4B, cAMP-specific −1.77
ZFPM1 Zinc finger protein, FOG family member 1 1.75

Negative regulation of interferon gamma production

HLADRB1 Major histocompatibility complex, class II, DR beta 1 −10.91
RARA Retinoic acid receptor, alpha −7.60
FOXP3 Forkhead box P3 −2.14

Cellular response to interferon gamma

SLC26A6 Solute carrier family 26 (anion exchanger), member 6 1.95

DAPK3 Death-associated protein kinase 3 −1.62
CD40 CD40 molecule, TNF receptor superfamily member 5 2.72

MEFV Mediterranean fever −4.83
SNCA Synuclein alpha 8.62

MRC1 Mannose receptor, C type 1 −1.93
Toll-like receptors signaling pathway

TANK TRAF family member-associated NFKB activator −1.91
NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha −1.76
MAPK8 Mitogen-activated protein kinase 8 −2.28
IKBKE Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase epsilon 1.50

MAPK1 Mitogen-activated protein kinase 1 −2.23
JUN jun proto-oncogene −1.91
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regulator that is crucial for the development and inhibi-
tory function of regulatory T cells, [38] interleukin-6 that
is pivotal for the development of Th-17 cells [39], and
FCGR2B that is involved in the phagocytosis of immune
complexes and in modulation of antibody production by
B cells [40] (Table 6).

In the “Rotavirus infection” dataset, we found upregu-
lation for molecules that are crucial in the immune
response including the BLK gene, involved in transmitting
signals through surface immunoglobulins, supporting the
pro-B to pre-B transition, [41] MR1/MAIT playing a role
in the development of the mucosal-associated invariant T
cells (MAIT), [42] TNFRSF4 involved in T cell prolifera-
tion [43], and HCST/DAP10 playing a role in triggering
cytotoxicity against both stressed and infected by virus tar-
get cells [44] (Table 7).

Interestingly, in all the datasets, we found the presence of
modulated genes involved in the type I interferon signaling,
that is central in autoimmunity, and in molecular pathways
involved in the immune response to viral infection, including
the Toll-like receptors, and the type I and gamma interferon
pathways (see Tables 2, 6, and 7).

Taken together, our data seem to indicate that NCGS has
features of autoimmunity and that an immune response to
rotavirus may play a role in some cases of NCGS.

4. Conclusions

NCGS is an emerging new clinical entity lacking specific
diagnostic biomarkers which has been reported to occur in
6–10% of the population. Interestingly, up to 50% of these
patients carry HLA-DQ2 and/or HLA-DQ8 genes. NCGS
patients may complain gastrointestinal (e.g., diarrhoea/con-
stipation, abdominal pain, bloating) and/or extraintestinal
symptoms (“foggy mind,” headache, dermatitis, etc.) which
recede with GFD. The pathogenesis of NCGS is still unclear
and the data, so far obtained, suggest a predominant activa-
tion of the innate immune responses.

Our data indicate a concomitant involvement of the
adaptive immune system and suggest that NCGS may have
an autoimmune origin. This is based both on gene expression
data (i.e., TH17-IFNA I signatures) and on the presence of
TH17 cells and of serological markers of autoimmunity in
NCGS. Our results also indicate a possible involvement of
rotavirus infection in the pathogenesis of NCGS, similarly
to what we have previously shown in CD.
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